STONEFIELD

Stormwater Management Report Enclave at Millington

Proposed Mixed-Use Residential \& Commercial Development BLock I230I, LOT I \& BLOck IOI00, LOt 7.01 50 division Avenue Millington, Township of Long Hill Morris County, New Jersey

Prepared For: Prism Millington, LLC

Prepared by: Stonefield Engineering \& Design, tLC

92 Park Avenue
Rutherford, New Jersey

Report Date:
OCtober 25, 2019

Chuck D. Olive, Pe, PP, PTOE
NJ PE LICENSE \#46719
I CERTIFY UNDER PENALTY OF LAW THAT I HAVE PERSONALLY EXAMINED AND AM FAMILIAR WITH THE INFORMATION SUBMITTED IN THIS DOCUMENT AND ALL ATTACHMENTS AND THAT, BASED ON MY INQUIRY OF THOSE INDIVIDUALS IMMEDIATELY RESPONSIBLE FOR OBTAINING AND PREPARING THE INFORMATION, I BELIEVE THAT THE INFORMATION IS TRUE, ACCURATE, AND COMPLETE. I AM AWARE THAT THERE ARE SIGNIFICANT PENALTIES FOR KNOWINGLY SUBMITTING FALSE INFORMATION, INCLUDING THE POSSIBILITY OF FINE AND IMPRISONMENT.

REPORT CONTENTS

I. 0 Project Description I
2.0 Existing Conditions I
EXISTING SITE DEVELOPMENT
EXISTING TOPOGRAPHY 2
PROJECT SITE SOILS 2
EXISTING ENVIRONMENTAL INVENTORY 2
3.0 Proposed Conditions 3
PROPOSED SITE DEVELOPMENT 3
PROPOSED TOPOGRAPHY 3
ANTICIPATED ENVIRONMENTAL INVENTORY IMPACTS 3
4.0 Stormwater Management Methodology \& Parameters. 3
HYDROLOGIC METHODOLOGY 3
HYDRAULIC METHODOLOGY 4
5.0 STORMWATER ANALYSIS 4
EXISTING DRAINAGE AREAS 4
PROPOSED DRAINAGE AREAS 5
STORMWATER MANAGEMENT DESIGN PARAMETERS 6
STORMWATER RUNOFF QUANTITY 7
GROUNDWATER RECHARGE 8
STORMWATER PIPE CONVEYANCE SYSTEM 8
6.0 StORMWATER FACILITY Operations \& Maintenance 9
7.0 Erosion \& Sediment Control 9
8.0 CONCLUSIONS 10
9.0 References. 10

APPENDICES

Project Figures A
USGS LOCATION MAP Figure I
Aerial Map Figure 2
Tax \& Zoning Map Figure 3
Overall Site Plan (Not to Scale) Figure 4
NRCS Soils Report B
Hydrologic \& Hydraulic Calculations C
NOAA Rainfall Data C-I
Hydrocad Node Schematic Diagram C-2
HydroCAD Hydrologic Calculations C-3
2-Year Storm Event Hydrographs
10-Year Storm Event Hydrographs
25-Year Storm Event Hydrographs
100-Year Storm Event Hydrographs
Hydraflow Pipe Network Schematic Diagram C-4
HydraFlow Hydraulic Calculations C-5
Pipe Network Summary Chart
Individual Pipe Segment Profiles
Drainage Area Maps D
Existing Drainage Area Map I OF 2
Proposed Drainage Area Map 2 OF 2

I. 0 Project Description

Prism Millington, LLC is proposing to redevelop Block 12301, Lot I and Block 10100, Lot 7.01 (herein referred to as the "project site") to accommodate fourteen multi-family residential buildings (140 units total), one commercial building (approximately $4,992 \mathrm{SF}$), and multiple amenity areas for residents (consisting of a multiple patios throughout the project site, community building and a pool). Additional improvements include multiple patio areas located throughout the project site, off-street parking lots, lighting, and landscaping. The subject property is located within the Township of Long Hill and is bounded by an NJ Transit Railroad to the north, Division Avenue to the east, Stone House Road to the south, and the Passaic River to the west.

Refer to APPENDIX A for project maps of the subject site.

The total project area is $518,332 \mathrm{SF}$ (11.90 acres), the impervious surfaces has been reduced by 101,084 SF ($\mathbf{2 . 3 2}$ acres), and the total area of disturbance is 339,160 SF (7.79 acres).

This Stormwater Management Report has been prepared to analyze the potential stormwater runoff impacts of the proposed project and discuss the measures proposed to conform to the stormwater management requirements set forth by the Township of Long Hill, Morris County Soil Conservation District, and the New Jersey Department of Environmental Protection (NJDEP).

2.0 Existing Conditions

EXISTING SITE DEVELOPMENT

The project site is currently occupied by multiple industrial tenants. Under existing conditions, the site contains two one-story industrial buildings, one two-story industrial building, and one three-story industrial building. Access to the site is provided via two full-movement driveways along River Road and a parking lot that opens directly to the road on Stone House Road. There are single family residences to the west and south-west of the site, commercial businesses to the south and east. To the north, there are commercial businesses and a train station. Train tracks run adjacent to the northern property line while the Passaic River runs along the western property line. An Aerial Map depicting the existing site conditions can be found in APPENDIX A.

EXISTING TOPOGRAPHY

The high point of the subject site is at the northeast corner of the site abutting River Road and Division Avenue. River Road drains northwest towards current parking areas of adjacent lots, Division Avenue drains south towards Stone House Road and combines with the run-off of Stone House Road ultimately discharging into the Passaic River. On-site topography slopes toward low points within the site, collected by a stormwater system, and discharged to the Passaic River. Grades on the subject site average between 0% and 3.43%. within the areas surrounding the buildings. However, steeper slopes are seen in the northern and southwestern corners of the subject site.

PROJECT SITE SOILS

Soil mapping was obtained from the National Resource Conservation Service (NRCS) for the project site and immediate area. Generally, the project site is underlain with one major soil group: silt loam which occupies a majority of the site. Overall, the soils drain well, and runoff flows overland directly to the Passaic River. The table below provide a summary of soils for the project site:

TABLE I: NRCS SOIL MApping Results

Soil Unit Code	Soil Description	Approximate Project Coverage	Drainage Class	Hydrologic Soil Group
PeoC	Penn Channery Silt Loam, 8\% to I5\% Slopes	9.5%	Well drained	B
USPENB	Urban Land-Penn Complex, 0\% to 8\% Slopes	87.5%	Well drained	C
WATER	Passaic River	3.0%	N/A	N/A

*USPENB does not have a pre-determined hydraulic soil group due to high variability in the historic fill material utilized. As such, these soils are analyzed as HSG B under pre-existing conditions and HSG D under post-development conditions.

Additional information regarding the NRCS soil mapping can be found in APPENDIX B.

EXISTING ENVIRONMENTAL INVENTORY

The project site is bounded by the Passaic River on the west with a NJDEP Restricted Area separating it from the proposed project site. The river is subject to a special flood hazard area as verified and delineated on FEMA Flood Insurance Map Panel \# 3403560005B. The limits of these areas are shown on the Critical Area Plan (Sheet C-I7) of the Preliminary and Final Major Site Plans prepared by Stonefield in conjunction with this Report.

3.0 Proposed Conditions

PROPOSED SITE DEVELOPMENT

Under the proposed development plan, the project area will include a mixed-use family and commercial development. The proposed development includes the construction of fourteen 10 -unit multi-family residences, an I,800 SF community building, a 4,992 SF retail building, and supporting improvements inclusive of parking facilities, landscaping, utilities, site lighting, and stormwater management measures. The eastern portion of the site that is within the limit of disturbance is being collected via the proposed conveyance system on site and either being sent directly to the Passaic River or to the Municipal conveyance system via catch basins and HDPE pipes. Refer to APPENDIX A for a half-size Overall Site Plan depicting the proposed project improvements.

PROPOSED TOPOGRAPHY

Project site topography and drainage patterns will generally remain similar to existing conditions; however, due to the need for more commercially friendly, ADA compliant grades (1.5% to 3%) various retaining walls will be implemented through the project to make up for the change in grades.

ANTICIPATED ENVIRONMENTAL INVENTORY IMPACTS

The proposed redevelopment will not disturb land within environmentally regulated areas (flood hazard area, riparian zone, freshwater wetland ditch, and freshwater wetland transition area). As such, permits and approvals will not be sought from the NJDEP to perform work within these areas.

4.0 Stormwater Management Methodology \& Parameters

HYDROLOGIC METHODOLOGY

The analysis program "HydroCAD" Version 10.0 by HydroCAD Software Solutions was utilized to calculate and plot the runoff hydrographs. The program incorporates the time of concentration, C values, rainfall data, and project drainage areas to calculate the runoff characteristics. The existing and proposed drainage areas have been analyzed utilizing Intensity-Duration-Frequency data was obtained from NOAA for the project area; specifics of the rainfall distribution can be found in Appendix C. Additional key variables utilized in the analysis include:

TABLE 2: Hydrocad Design Variables

Variable	Input	Variable	Input
Runoff Calculation Method	SCS TR-20	NRCS Rainfall Frequency Data Set	Morris
Pervious/Impervious CN Calculations	Separate	Storm Intervals (Year Events)	$2,10,25,100$
Stage-Storage Relationship	Dynamic	Storm Duration	24 Hours
Minimum time of concentration	10 minutes	Storm Curve	NOAA D

Additional information regarding the hydrologic calculations can be found in APPENIDX C.

HYDRAULIC METHODOLOGY

The analysis program "HydraFlow Storm Sewers" Version 2018 by Autodesk was utilized to generate hydraulic grade lines through the proposed conveyance system model based on various pipe / junction losses and the runoff tributary to each inlet or discharge structure. Additional key variables utilized in the analysis include:

TABLE 3: Hydraflow Design Variables

Variable	Input	Variable	Input
Runoff Calculation Method	Rational	Pipe Conveyance Method	Std. Step
C-value for impervious surfaces	0.95	Initial Hydraulic Grade Line	Normalized
C-value for pervious surfaces	0.60	Inlet Drainage Area Delineation	Surveyed
Minimum time of concentration	10 minutes	Inlet Geometry \& Capacity	NJDOT Std.

Additional information regarding the hydrologic calculations can be found in APPENDIX C.

5.0 Stormwater Analysis

EXISTING DRAINAGE AREAS

Under existing conditions, the site is comprised of four drainage areas, and one Point of Interest (POI). The Point of Interest (POI-I) discharges to the Passaic River along the western property line. The site slopes from the northeastern corner of the site to the southwestern portion of the site. The existing slopes are not steep throughout the site with an average grade around 3.5%. See below for a short summary of each area:

TABLE 4: Summary of Existing Drainage Areas

Drainage Area	Description	Area Extents	Impervious Area	Time of Concentration
E-IA	Existing Drainage to Existing Conveyance System (I8" Pipe)	52,576	9,429	10^{*}
E-IB	Existing Drainage to Existing Conveyance System (42" Pipe)	141,668	141,668	10^{*}
E-IC	Existing Drainage to Existing Conveyance System (I5" Pipe)	80,227	78,544	10^{*}
E-ID	Existing Drainage to Municipal System	52,934	43,589	10^{*}
POI (E-I)	Ultimate Point of Interest: Passaic River	327,405 SF	273,230	N/A

*The minimum time of concentration was utilized due to the high level of impervious coverage and proximity to the Passaic River.

All existing drainage areas were delineated based on field surveying data. Hydrologic calculations and parameters for each drainage area can be found in APPENDIX C; specific drainage area delineations and land cover can be found in APPENDIX D.

PROPOSED DRAINAGE AREAS

Under proposed conditions the site is comprised of one (I) point of interest. POI-I is comprised of four subareas with all areas ultimately discharging to the Passaic River, consistent with existing drainage patterns. The subareas are either collected via proposed catch basins and sent directly to the Passaic River via existing conveyance pipes on-site or to the Municipal conveyance system within Stone House Road. Drainage area P-IA is discharged to the Passaic River via a connection to an existing catch basin on the northwest corner of the site with an outlet pipe 18 " in diameter. Drainage area P -IB is discharged to the Passaic River via a connection to an existing manhole located between Building \#2 and Building \#3 with an outlet pipe 42 " in diameter. Drainage area P-IC is discharged to the Passaic River via a connection to an existing catch basin located north of Building \#5 with an outlet pipe I5" in diameter. Drainage area P-ID is collected within the Municipal System in Stone House Road via sheet flow to various existing inlets which eventually discharge into the Passaic River. See below for a short summary of each area:

TABLE 5: Summary of Proposed Drainage Areas

Drainage Area	Description	Area Extents	Impervious Area	Time of Concentration
P-IA	Proposed Drainage to Passaic River via Proposed Conveyance System (I8" Pipe)	50,878	20,909	10^{*}
P-IB	Proposed Drainage to Passaic River via Proposed Conveyance System (42" Pipe)	142,558	103,691	10^{*}
P-IC	Proposed Drainage to Passaic River via Proposed Conveyance System (I5" Pipe)	81,290	58,221	10^{*}
P-ID	Proposed Drainage Directly to Municipal System	52,679	23,598	10^{*}
POI (P-I)	Ultimate Point of Interest: Passaic River	327,405 SF	206,525 SF	N/A

*The minimum time of concentration was utilized for all drainage areas due to the high level of impervious coverage / land disturbance and proximity to existing and proposed stormwater pipe conveyance system.

All proposed drainage areas were delineated based on the proposed grading design overlain on field survey data. Hydrologic calculations and parameters for each drainage area can be found in APPENDIX C; specific drainage area delineations and land cover can be found in APPENDIX D.

STORMWATER MANAGEMENT DESIGN PARAMETERS

As the proposed improvement will disturb 7.79 acres of land, the project is defined as a "Major Development" as indicated in Town Ordinances and per NJDEP regulations. The proposed project will meet the stormwater quantity requirements by demonstrating that at no point in time does the post-development hydrograph or run-off volumes exceed the pre-development hydrograph or run-off volumes; as the analysis area is the same and impervious surfaces have been decreased, the post-construction quantities will at no point exceed the pre-development quantities. Groundwater recharge requirements do not apply as the site is located within the State Planning Area PA-I. Additionally, water quality requirements do not apply as the site is proposing to decrease impervious surfaces on-site by 2.32 acres per NJAC Section 7:8-5.5. See below for a summary of each design parameter and compliance requirements:

TABLE 6: Stormwater Management Design Target Summary

Design Parameter	Design Target for Compliance
Stormwater Runoff Quantity	Demonstrate through hydrologic and hydraulic analysis that for stormwater leaving the site, post-construction runoff hydrographs for the 2, IO, and 100-year storm events do not exceed, at any point in time, the pre-construction runoff hydrographs for the same storm events.
Groundwater Recharge	The project is exempt from groundwater recharge requirements as the project site is located within State Planning Area PA-I (Metropolitan).
Water Quality	The project is exempt from water quality requirements as the project site is proposing to decrease impervious surfaces on-site per NJAC Section 7:8-5.5

STORMWATER RUNOFF QUANTITY

Runoff is controlled through the implementation of the reduction of impervious area on site. The tables below summarize the various drainage areas in relation to flow rates and runoff volume during regulatory storm events:
table 7: Summary of Existing Drainage Area Flow Rates \& Volumes

Drainage Area	2-Year Flow Rate	I0-Year Flow Rate	I00-Year Flow Rate
E-IA	3.14 CFS	4.89 CFS	8.29 CFS
E-IB	9.18 CFS	13.91 CFS	22.97 CFS
E-IC	5.16 CFS	7.84 CFS	12.98 CFS
E-ID	3.16 CFS CFS	4.93 CFS	8.35 CFS
POI (E-I)	20.64 CFS	31.57 CFS	52.59 CFS

TABLE 8: Summary of Proposed Drainage Area Flow Rates \& Volumes

Drainage Area	2-Year Flow Rate	I0-Year Flow Rate	I00-Year Flow Rate
P-IA	2.44 CFS	4.15 CFS	7.50 CFS
P-IB	8.13 CFS	12.89 CFS	22.14 CFS
P-IC	4.61 CFS	7.33 CFS	12.60 CFS
P-ID	2.59 CFS	4.35 CFS	7.81 CFS
POI (P-I)	17.77 CFS	28.71 CFS	50.05 CFS

Under post-development conditions the runoff flow rates and volumes are reduced to the undetained drainage areas including Stone Hill Road (E-ID/P-ID). The diverted runoff from these areas are collected in the on-site
stormwater management system ($\mathrm{E}-\mathrm{IA} / \mathrm{P}-\mathrm{IA}, \mathrm{E}-\mathrm{IB} / \mathrm{P}-\mathrm{IB}$, and $\mathrm{E}-\mathrm{IC} / \mathrm{P}-\mathrm{IC}$) and conveyed directly to discharge into the Passaic River. The table below outlines the regulatory compliance parameters for runoff quantity on the project site:

TABLE 9: Stormwater Runoff Quantity Compliance Summary at Point of Interest (E-I / P-I)

Rainfall Event	Existing Flow Rate	Required \% Reduction	Required Flow Rate	Proposed Flow Rate	Proposed \% Reduction
2-Year Storm	20.64 CFS	N/A	20.39 CFS	17.77 CFS	13.91%
I0-Year Storm	31.57 CFS	N/A	31.25 CFS	28.71 CFS	9.06%
I00-Year Storm	52.59 CFS	N/A	52.19 CFS	50.05 CFS	4.83%

The reduction of impervious area on site decreases the flow rate as to ensure that no adverse impacts are anticipated downstream of the project site. Detailed hydrologic calculations for each drainage area can be found in APPENDIX C.

GROUNDWATER RECHARGE

As indicated in the Township Ordinances and NJAC 7:8-5.4, the project site is exempt from groundwater recharge requirements as the site is located within the Metropolitan Planning Area (PA-I) per the State Plan Policy Map and thus qualifies as an Urban Redevelopment Area (which is exempt from groundwater recharge requirements).

STORMWATER PIPE CONVEYANCE SYSTEM

The on-site stormwater conveyance system has been sized for the 25 -year storm event and is able to safely convey runoff to the proposed stormwater management facilities without overflow or bypass. Detailed hydraulic calculations for the conveyance system can be found in APPENDIX C. See below for a table summarizing the various drainage areas during the 25 -year storm event:

TABLE I0: SUMMARY OF 25-YEAR STORM (FOR DRAINAGE DIRECT TO PUBLIC ROW OR TRIBUTARY)

Tributary Area	Existing Flow Rate	Proposed Flow Rate	Flow Rate Difference	Existing Volume	Proposed Volume	Volume Difference
Drainage Direct to Passaic River (E-IA/P-IA, $\mathrm{E}-\mathrm{IB} / \mathrm{P}-\mathrm{IB}$, and E-IC/P-IC)	32.93 CFS	30.74 CFS	-2.19 CFS	137,739 CF	I24,277 CF	-13,462 CF
Drainage Direct to Municipal System (E-ID / P-ID)	6.15 CFS	5.58 CFS	-0.57 CFS	25,348 CF	21,909 CF	-3,439 CF
Overall Drainage to Passaic River (E-I/P-I)	39.08 CFS	36.33 CFS	-2.75 CFS	163,087 CF	146, I86 CF	-16,901 CF

The runoff flow rates and volumes that directly tributary to the existing Township stormwater pipe conveyance systems within Stone House Road (E-ID/P-ID) are significantly reduced under proposed conditions. As such, no adverse impacts to the adjacent existing stormwater infrastructure is anticipated. Additionally, the volume of stormwater runoff is proposed to decrease overall to the ultimate point of interest (due to the decrease in impervious coverage on-site) the flow rates are significantly reduced and the proposed stormwater management and soil erosion features ensure that runoff entering the Passaic River is safely conveyed so as to not cause any adverse impacts further downstream.

6.0 Stormwater Facility Operations \& Maintenance

A Stormwater Operations \& Maintenance Manual will be submitted for approval to the Morris County Soil Conservation District prior to the start construction. Any required easements or covenants associated with the stormwater improvements will be recorded prior to the start of construction.

7.0 Erosion \& Sediment Control

A Soil Erosion \& Sediment Control Plan has been prepared in accordance with the latest edition of the Standards for Soil Erosion and Sediment Control in New Jersey. Proposed temporary measures during construction include silt fencing, stabilized construction entrances, inlet filters, and cover for soil stabilization. No land disturbance will occur until a permit has been obtained from the Morris County Soil Conservation District.

8.0 CONCLUSIONS

The proposed project complies with all applicable stormwater management regulations and standards. As such, the project is not anticipated to have any adverse impacts or neighboring properties, downstream watercourses, or conveyance systems within the watershed.

9.0 REFERENCES

I. New Jersey Administrative Code Title 7, Chapter 8 Stormwater Management, last amended June 20, 2016 https://www.nj.gov/dep/rules/rules/njac7_8.pdf
2. New Jersey Stormwater Best Management Practices Manual, last revised November 2018 https://www.njstormwater.org/bmp_manual2.htm
3. Township of Long Hill Land Use Ordinance, last amended May 31, 2019 https://clerkshq.com/LongHill-ni

APPENDIX A Project Figures

INVENTORY

Figure I: USGS Location Map
Figure 2: Aerial Map
Figure 3: Tax \& Zoning Map
Figure 4: FEMA MAP
Figure 5: Site Plan (Not to Scale)

 INSURANCE RATE MAP

GRAPHIC SCALE IN FEET

$\mathrm{I}^{\prime \prime}=1000^{\prime}$

DRAWN BY:	
	BVT
CHECKED BY:	SMO
DATE:	$06 / 11 / 2019$
SCALE:	$\mathrm{I}^{\prime \prime}=1000^{\prime}$
PROJECT ID:	T-17298

 STONEFIELD engineering \& design

Rutherford, NJ • New York, NY
Princeton, NJ • Tampa, FL • Detroit, MI www.stonefieldeng.com

APPENDIX B NRCS SOILS REPORT

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Morris County, New Jersey

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(c) Blowout

B Borrow Pit
次 Clay Spot
\diamond Closed Depression
Gravel Pit
$\therefore \quad$ Gravelly Spot
(4) Landfill
A. Lava Flow

Marsh or swamp
\& Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
+ Saline Spot
$\because \quad$ Sandy Spot
을 Severely Eroded Spot
- Sinkhole

3) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Morris County, New Jersey Survey Area Data: Version 13, Sep 13, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Dec 31, 2009—Feb 26, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
PeoC	Penn channery silt loam, 8 to 15 percent slopes	1.1	
USPENB	Urban land-Penn complex, 0 to 8 percent slopes	10.7	
WATER	Water	0.3%	
Totals for Area of Interest		$\mathbf{1 2 . 1}$	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The
delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Morris County, New Jersey

PeoC—Penn channery silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2 tt 83
Elevation: 250 to 800 feet
Mean annual precipitation: 38 to 53 inches
Mean annual air temperature: 43 to 57 degrees F
Frost-free period: 170 to 240 days
Farmland classification: Farmland of statewide importance

Map Unit Composition

Penn and similar soils: 80 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Penn

Setting

Landform: Hills
Landform position (two-dimensional): Shoulder, backslope, summit Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex
Across-slope shape: Linear
Parent material: Residuum weathered from shale and siltstone

Typical profile

Ap - 0 to 10 inches: channery silt loam
Bt1-10 to 15 inches: channery silt loam
Bt2 - 15 to 19 inches: channery silt loam
Bt3 - 19 to 22 inches: channery loam
C-22 to 28 inches: very channery loam
R - 28 to 38 inches: bedrock
Properties and qualities
Slope: 8 to 15 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.14 to $1.28 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.6 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: B
Hydric soil rating: No

Minor Components

Klinesville

Percent of map unit: 10 percent
Landform: Hills
Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Hydric soil rating: No

Croton

Percent of map unit: 5 percent
Landform: Depressions
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Linear, concave
Across-slope shape: Linear, concave
Hydric soil rating: Yes

Readington

Percent of map unit: 5 percent
Landform: Depressions
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Base slope
Down-slope shape: Linear, concave
Across-slope shape: Linear, concave
Hydric soil rating: No

USPENB—Urban land-Penn complex, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 13q0b
Elevation: 250 to 1,300 feet
Mean annual precipitation: 30 to 64 inches
Mean annual air temperature: 46 to 79 degrees F
Frost-free period: 131 to 178 days
Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 55 percent
Penn and similar soils: 35 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Setting
Landform: Hills
Down-slope shape: Linear, convex

Across-slope shape: Linear
Parent material: Surface covered by pavement, concrete, buildings, and other structures underlain by disturbed and natural soil material

Typical profile

C-0 to 60 inches: variable

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 8s
Hydric soil rating: Unranked

Description of Penn

Setting

Landform: Hills
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Convex
Parent material: Fine-loamy residuum weathered from acid reddish shale, siltstone, and fine-grain sandstone

Typical profile

A-0 to 8 inches: channery silt loam
$B A-8$ to 14 inches: channery silt loam
$B-14$ to 24 inches: channery silt loam
BC - 24 to 30 inches: channery silt loam
C-30 to 36 inches: very channery silt loam
$R-36$ to 80 inches: weathered bedrock

Properties and qualities

Slope: 0 to 6 percent
Depth to restrictive feature: 20 to 39 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 5.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2 e
Hydrologic Soil Group: C
Hydric soil rating: No

Minor Components

Klinesville

Percent of map unit: 5 percent
Landform: Hills
Landform position (two-dimensional): Shoulder
Down-slope shape: Linear
Across-slope shape: Convex
Hydric soil rating: No

Custom Soil Resource Report

Reaville

Percent of map unit: 5 percent
Landform: Interfluves
Down-slope shape: Convex
Across-slope shape: Linear
Hydric soil rating: No

WATER-Water

Map Unit Setting

National map unit symbol: b0p9
Mean annual precipitation: 30 to 64 inches
Mean annual air temperature: 46 to 79 degrees F
Frost-free period: 131 to 178 days
Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

APPENDIX C Hydrologic \& Hydraulic CALCULATIONS

INVENTORY

C-I: NOAA Rainfall Frequency Data
C-2: Hydrocad Node Schematic Diagram
C-3: HydroCAD Hydrologic Calculations
C-4: HydraFlow Pipe Network Summary Chart C-5: HydraFlow Hydraulic Pipe Analysis

NOAA Atlas 14, Volume 2, Version 3
Location name: Millington, New Jersey, USA*
Latitude: $\mathbf{4 0 . 6 7 1 8}^{\circ}$, Longitude: $\mathbf{- 7 4 . 5 2 4 5 ^ { \circ }}$
Elevation: 249.16 ft** *

* source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland
PF tabular I PF_graphical | Maps \& aerials

PF tabular

PDS-based point precipitation frequency estimates with 90\% confidence intervals (in inches) ${ }^{1}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	(0.305-0.369)		(0.428-0.519)	$\mid(0.475-0.577)$	$(0.531-0.646)$	(0.569-0.695)	$\mid(0.605-0.743)$	$\begin{gathered} \mathbf{0 . 7 1 5} \\ (0.636-0.785) \\ \hline \end{gathered}$	$(0.674-0.840)$	
10-1	$\begin{array}{r} \mathbf{0 . 5 3 4} \\ (0.486-0.5 \end{array}$	637	0)	$.83$			1.07	1.13	$.21$	1.25
15	$\begin{array}{r} \mathbf{0 . 6 6 7} \\ (0.608-0.7 \end{array}$	$\begin{array}{r} 0.800 \\ (0.729-0.8 \end{array}$		$\begin{array}{c\|} \hline 1.06 \\ (0.959-1.16) \\ \hline \end{array}$				$\begin{gathered} 1.43 \\ (1.27-1.57) \end{gathered}$	$\begin{gathered} 1.52 \\ (1.34-1.67) \end{gathered}$	$\begin{gathered} 1.58 \\ (1.38-1.74) \\ \hline \end{gathered}$
30-min		10	$1 .$	53				$\begin{aligned} & .22 \\ & 7-2.44) \\ & \hline \end{aligned}$	$\begin{aligned} & .41 \\ & 3-2.65) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.54 \\ & 23-2.81) \\ & \hline \end{aligned}$
60-min	$\begin{array}{r} 1.14 \\ (1.04-1.2 \\ \hline \end{array}$		$\begin{gathered} 1.73 \\ (1.58-1.91) \end{gathered}$	$\begin{gathered} 1.99 \\ (1.81-2.19) \end{gathered}$						
2-hr	$(1.26-1.54)$	$\begin{gathered} 1.70 \\ (1.54-1.88) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 1 5} \\ (1.95-2.38) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 5 0} \\ (2.26-2.77) \end{gathered}$		$\begin{gathered} \hline 3.39 \\ (3.02-3.74) \\ \hline \end{gathered}$	$\begin{gathered} 3.80 \\ (3.37-4.19) \\ \hline \end{gathered}$	$\begin{gathered} 4.23 \\ (3.72-4.66) \end{gathered}$	$\begin{gathered} \hline 4.83 \\ (4.20-5.34) \end{gathered}$	$\begin{gathered} 5.30 \\ (4.57-5.87) \end{gathered}$
3-hr	$(1.41-1.73)$	$\begin{gathered} 1.90 \\ (1.72-2.11) \end{gathered}$	$\begin{gathered} 2.41 \\ (2.18-2.68) \end{gathered}$	$\begin{gathered} \mathbf{2 . 8 1} \\ (2.53-3.11) \end{gathered}$	$(3.01-3.71)$	$\begin{gathered} 3.80 \\ (3.40-4.20) \\ \hline \end{gathered}$	$\begin{gathered} 4.26 \\ (3.78-4.71) \end{gathered}$			
6-hr	$(1.82-2.23)$	$\begin{gathered} \mathbf{2 . 4 3} \\ (2.21-2.70) \\ \hline \end{gathered}$	$(2.79-3.41)$	$(3.26-3.98)$	$(3.90-4.80)$	(4.44-5.49)	(4.99-6.23)	$(5.58-7.01)$	$(6.39-8.17)$	(7.05-9.13)
12-hr	(2.26-2.7	2.74-3.3	(3.48-4.2	(4.10-5.0	(4.98-6.1	(5.72-7.0			(8.55-11.0)	
24-hr	(2.62-3	3.17-3.72	(4.03-	(4.75-	(5.81-6.87	(6.69-7.97)	(7.65-9.19)	(8.68-10.6)	$\begin{gathered} 11.6 \\ (10.2-12.6) \end{gathered}$	$\begin{gathered} 13.2 \\ (11.4-14.4) \end{gathered}$
2-day	$(3.06-3.64)$	(3.70-4.40)	$\begin{gathered} 5.11 \\ (4.69-5.59) \end{gathered}$	$\begin{gathered} 6.01 \\ (5.51-6.57) \end{gathered}$	(6.67-8.00)	(7.64-9.20)	$(8.66-10.5)$	(9.74-12.0)	$(11.3-14.1)$	(12.5-15.9)
3-day	$(3.23-3.82)$	$(3.90-4.61)$	(4.93-5.84)	$\begin{gathered} 6.28 \\ (5.77-6.84) \\ \hline \end{gathered}$	(6.96-8.30)	(7.95-9.52)	$(8.98-10.8)$	(10.1-12.3)	$(11.6-14.4)$	$\begin{gathered} 14.7 \\ (12.8-16.2) \end{gathered}$
4-d	$(3.40-4.00)$	$\begin{gathered} \hline 4.44 \\ (4.11-4.83) \end{gathered}$	$\begin{gathered} 5.61 \\ (5.17-6.10) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{6 . 5 6} \\ (6.03-7.12) \end{gathered}$	$(7.26-8.60)$	(8.25-9.84)	$(9.29-11.2)$	$\begin{gathered} 11.6 \\ (10.4-12.6) \\ \hline \end{gathered}$	$\begin{gathered} 13.4 \\ (11.9-14.7) \end{gathered}$	(13.1-16.5)
7-day	(4.03-4.70)	$\begin{gathered} 5.21 \\ (4.84-5.64) \end{gathered}$	$\begin{gathered} \mathbf{6 . 4 6} \\ (5.99-6.99) \\ \hline \end{gathered}$	$\begin{gathered} 7.49 \\ (6.92-8.10) \\ \hline \end{gathered}$	(8.24-9.69)	(9.31-11.0)	(10.4-12.4)	$(11.6-14.0)$	$(13.2-16.2)$	(14.5-18.0)
10-day	(4.64-5.36)	$\begin{gathered} 5.95 \\ (5.55-6.40) \end{gathered}$	$\begin{gathered} 7.27 \\ (6.76-7.82) \end{gathered}$	(7.75-8.98)	$\begin{gathered} 9.86 \\ (9.11-10.6) \end{gathered}$	(10.2-11.9)	$(11.3-13.4)$	(12.5-14.9)	$(14.0-17.0)$	(15.3-18.7)
20-da	(6.32-7.17)	(7.49-8.51)	(8.93-10.1)	$(10.1-11.4)$	(11.5-13.2)	(12.7-14.5)	(13.8-15.9)	(15.0-17.4)	(16.4-19.3)	$(17.5-20.8)$
30-da	(7.92-8.85)	$(9.35-10.4)$	(10.9-12.2)	$\begin{gathered} \hline 12.8 \\ (12.1-13.5) \\ \hline \end{gathered}$	(13.6-15.3)	(14.8-16.6)	(15.9-17.9)	(16.9-19.3)	(18.3-21.0)	$(19.2-22.2)$
45-day	(10.1-11.2)	(11.9-13.2)	$\begin{gathered} 14.4 \\ (13.7-15.2) \end{gathered}$	$\begin{gathered} 15.8 \\ (15.0-16.7) \\ \hline \end{gathered}$	(16.7-18.6)	$(18.0-20.1)$	(19.2-21.5)	$(20.3-22.8)$	$(21.7-24.6)$	$(22.6-25.8)$
60-day	$\begin{gathered} \hline 12.8 \\ (12.1-13.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{1 5 . 0} \\ (14.2-15.7) \end{gathered}$	$\begin{gathered} 17.1 \\ (16.3-17.9) \end{gathered}$	$\begin{gathered} \hline 18.7 \\ (17.8-19.6) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 0 . 6} \\ (19.6-21.7) \end{gathered}$	$\begin{gathered} 22.1 \\ (20.9-23.2) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 3 . 4} \\ (22.2-24.7) \end{gathered}$	$\begin{gathered} \mathbf{2 4 . 7} \\ (23.3-26.0) \end{gathered}$	$\begin{gathered} \mathbf{2 6 . 2} \\ (24.6-27.7) \end{gathered}$	$\begin{gathered} \mathbf{2 7 . 2} \\ (25.6-28.9) \end{gathered}$

[^0]
PF graphical

Time span=0.00-30.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}, 3001$ points
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv.
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentE-1B: Existing Drainage Runoff Area=141,668 sf 100.00% Impervious Runoff Depth=3.19" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=0 / 98$ Runoff=9.18 cfs $37,621 \mathrm{cf}$

SubcatchmentE-1C: Existing Drainageto Runoff Area=80,227 sf 97.90% Impervious Runoff Depth=3.16" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=83 / 98$ Runoff=$=5.16 \mathrm{cfs} 21,109 \mathrm{cf}$

SubcatchmentE-1D: Existing Drainage to Runoff Area=52,934 sf 82.35% Impervious Runoff Depth $=2.90$ " $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff $=3.16 \mathrm{cfs} 12,801 \mathrm{cf}$

SubcatchmentP-1A: Proposed Drainage to Runoff Area=50,878 sf 41.10% Impervious Runoff Depth=2.24" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff=$=2.44 \mathrm{cfs} 9,481 \mathrm{cf}$

SubcatchmentP-1B: Proposed Drainage Runoff Area=142,558 sf 72.74\% Impervious Runoff Depth=2.75" Tc=10.0 min CN=80/98 Runoff=8.13 cfs $32,631 \mathrm{cf}$

SubcatchmentP-1C: Proposed Drainage to Runoff Area=81,290 sf 71.62\% Impervious Runoff Depth=2.73" $\mathrm{Tc}=10.0 \mathrm{~min} \quad \mathrm{CN}=80 / 98$ Runoff $=4.61 \mathrm{cfs} 18,485 \mathrm{cf}$

SubcatchmentP-1D: Proposed Drainage to Runoff Area=52,679 sf 44.80% Impervious Runoff Depth=2.30" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff $=2.59 \mathrm{cfs} 10,079 \mathrm{cf}$

Link E-1: Existing Drainage to Passaic River Inflow=20.64 cfs 84,226 cf Primary $=20.64$ cfs 84,226 cf

Link P-1: Proposed Drainage to Passaic River

Total Runoff Area $=654,810$ sf Runoff Volume $=154,903$ cf Average Runoff Depth $=2.84$ $\mathbf{2 1 . 6 0 \%}$ Pervious $=141,443 \mathrm{sf} \quad 78.40 \%$ Impervious $=513,367 \mathrm{sf}$

Summary for Subcatchment E-1A: Existing Drainage to Existing Conveyance System (18" Pipe)
Runoff $=3.14$ cfs @ 12.17 hrs, Volume $=12,694 \mathrm{cf}$, Depth= 2.90"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.42"

Area (sf)	CN	Description
43,147	98	Impervious Areas
9,429	80	$>75 \%$ Grass cover, Good, HSG D
52,576	95	Weighted Average
9,429	80	17.93\% Pervious Area
43,147	98	82.07% Impervious Area

\(\left.$$
\begin{array}{rrrl}\begin{array}{r}\text { Tc } \\
(\mathrm{min})\end{array} & \begin{array}{r}\text { Length } \\
(\mathrm{feet})\end{array} & \begin{array}{r}\text { Slope } \\
(\mathrm{ft} / \mathrm{ft})\end{array} & \begin{array}{r}\text { Velocity } \\
(\mathrm{ft} / \mathrm{sec})\end{array}\end{array}
$$ \begin{array}{r}Capacity

(\mathrm{cfs})\end{array}\right)\) Description | Direct Entry, Direct |
| :--- |

Subcatchment E-1A: Existing Drainage to Existing Conveyance System (18" Pipe)

Summary for Subcatchment E-1B: Existing Drainage to Existing Conveyance System (42" Pipe)
Runoff $=\quad 9.18$ cfs @ 12.17 hrs, Volume $=\quad 37,621 \mathrm{cf}$, Depth= 3.19"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.42"

	Area (sf)	CN	Description
*	141,668	98	Impervious Areas
141,668	98	100.00% Impervious Area	

Tc	Length (min)	Slope (feet)	Velocity (ft/ft)	Capacity (ft/sec)
10.0			Description	
(cfs)				

Subcatchment E-1B: Existing Drainage to Existing Conveyance System (42" Pipe)

Summary for Subcatchment E-1C: Existing Drainageto Existing Conveyance System (15" Pipe)

$$
\text { Runoff }=5.16 \text { cfs @ } 12.17 \text { hrs, Volume= } \quad 21,109 \mathrm{cf} \text {, Depth= } 3.1^{\prime \prime}
$$

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.42"

	Area (sf)	CN D	Description		
*	78,544	98 Im	Impervious Areas		
	353	96	Gravel surface, HSG D		
	1,330	80 >	>75\% Grass cover, Good, HSG D		
	80,227	98 V	Weighted Average		
	1,683	83	2.10\% Pervious Area		
	78,544	989	97.90\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	$\begin{array}{r} \text { c } \begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array} \\ \hline \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
10.0					Direct Entry

Subcatchment E-1C: Existing Drainageto Existing Conveyance System (15" Pipe)

Summary for Subcatchment E-1D: Existing Drainage to Municipal System
Runoff $=3.16$ cfs @ 12.17 hrs, Volume $=12,801 \mathrm{cf}$, Depth= 2.90"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.42"

	Area (sf)	CN	Description		
*	43,589	98	Impervious Areas		
	9,345	80	>75\% Grass cover, Good, HSG D		
	52,934	95 Weighted Average			
	9,345	80	17.65\% Pervious Area		
	43,589	98	82.35\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
10.0					Direct Entry

Subcatchment E-1D: Existing Drainage to Municipal System

Summary for Subcatchment P-1A: Proposed Drainage to Existing Conveyance System (18" Pipe)

Runoff $=\quad 2.44$ cfs @ 12.17 hrs, Volume= $\quad 9,481 \mathrm{cf}$, Depth= 2.24"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.42"

Area (sf)	CN	Description
20,909	98	Impervious Areas
29,969	80	$>75 \%$ Grass cover, Good, HSG D
50,878	87	Weighted Average
29,969	80	58.90% Pervious Area
20,909	98	41.10% Impervious Area

Tc (min)	Length $($ feet $)$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment P-1A: Proposed Drainage to Existing Conveyance System (18" Pipe)

Summary for Subcatchment P-1B: Proposed Drainage to Existing Conveyance System (42" Pipe)

Runoff $=8.13$ cfs @ 12.17 hrs, Volume $=\quad 32,631 \mathrm{cf}$, Depth= $2.75{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.42"

	Area (sf)	CN	Description
*	103,691	98	Impervious Areas
	38,867	80	>75\% Grass cover, Good, HSG D
	142,558	93	Weighted Average
	38,867	80	27.26\% Pervious Area
	103,691	98	72.74\% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment P-1B: Proposed Drainage to Existing Conveyance System (42" Pipe)

Summary for Subcatchment P-1C: Proposed Drainage to Existing Conveyance System (15" Pipe)

Runoff $=\quad 4.61$ cfs @ 12.17 hrs, Volume $=\quad 18,485$ cf, Depth= 2.73"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.42"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| * | 58,221 | 98 |
| :--- | ---: | :--- |
| Impervious Areas | | |
| 23,069 | 80 | $>75 \%$ Grass cover, Good, HSG D |
| 81,290 | 93 | Weighted Average |
| 23,069 | 80 | 28.38% Pervious Area |
| 58,221 | 98 | 71.62% Impervious Area |

| Tc
 (min) | Length
 (feet) |
| ---: | ---: | | Slope |
| ---: |
| $(\mathrm{ft} / \mathrm{ft})$ | | Velocity |
| ---: |
| $(\mathrm{ft} / \mathrm{sec})$ | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, Direct |
| :--- |

Subcatchment P-1C: Proposed Drainage to Existing Conveyance System (15" Pipe)

Summary for Subcatchment P-1D: Proposed Drainage to Municipal System
Runoff $=\quad 2.59$ cfs @ 12.17 hrs, Volume= $\quad 10,079 \mathrm{cf}$, Depth= 2.30"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.42"

	Area (sf)	CN	Description		
*	23,598	98 I	Impervious Areas $>75 \%$ Grass cover, Good, HSG D		
	29,081	$80>$			
	52,679	88	Weighted Average 55.20\% Pervious Area 44.80\% Impervious Area		
	29,081	80			
	23,598	98			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
10.0					Direct Entry

Subcatchment P-1D: Proposed Drainage to Municipal System

Summary for Link E-1: Existing Drainage to Passaic River
Inflow Area = 327,405 sf, 93.75\% Impervious, Inflow Depth = 3.09" for 2-Year event
Inflow = 20.64 cfs @ 12.17 hrs, Volume=

84,226 cf
Primary $=20.64$ cfs @ 12.17 hrs , Volume $=\quad 84,226 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary outflow $=$ Inflow, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link E-1: Existing Drainage to Passaic River

Summary for Link P-1: Proposed Drainage to Passaic River

Inflow Area $=\quad 327,405$ sf, 63.05\% Impervious, Inflow Depth $=2.59$ " for 2-Year event
Inflow $=17.77$ cfs @ 12.17 hrs, Volume $=\quad 70,677$ cf
Primary = $\quad 17.77$ cfs @ 12.17 hrs , Volume $=\quad 70,677 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span $=0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Link P-1: Proposed Drainage to Passaic River

Time span=0.00-30.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}, 3001$ points
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv.
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
SubcatchmentE-1A: Existing Drainage to Runoff Area=52,576 sf 82.07% Impervious Runoff Depth=4.57"
Tc=10.0 $\min \quad$ CN $=80 / 98$ Runoff $=4.89 \mathrm{cfs} 20,041 \mathrm{cf}$
SubcatchmentE-1B: Existing Drainage Runoff Area=141,668 sf 100.00% Impervious Runoff Depth=4.91" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=0 / 98$ Runoff=13.91 cfs 58,001 cf

SubcatchmentE-1C: Existing Drainageto Runoff Area=80,227 sf 97.90% Impervious Runoff Depth=4.88" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=83 / 98$ Runoff=7.84 cfs $32,621 \mathrm{cf}$

SubcatchmentE-1D: Existing Drainage to Runoff Area=52,934 sf 82.35% Impervious Runoff Depth $=4.58$ " $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff $=4.93 \mathrm{cfs} 20,201 \mathrm{cf}$

SubcatchmentP-1A: Proposed Drainage to Runoff Area=50,878 sf 41.10% Impervious Runoff Depth $=3.80$ " $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff=4.15 cfs 16,113 cf

SubcatchmentP-1B: Proposed Drainage Runoff Area=142,558 sf 72.74% Impervious Runoff Depth=4.40" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff $=12.89 \mathrm{cfs} 52,247 \mathrm{cf}$

SubcatchmentP-1C: Proposed Drainage to Runoff Area=81,290 sf 71.62% Impervious Runoff Depth=4.38" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff $=7.33 \mathrm{cfs} 29,650 \mathrm{cf}$

SubcatchmentP-1D: Proposed Drainage to Runoff Area=52,679 sf 44.80% Impervious Runoff Depth $=3.87$ " $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff $=4.35 \mathrm{cfs} 16,990 \mathrm{cf}$

Link E-1: Existing Drainage to Passaic River Inflow=31.57 cfs 130,864 cf Primary=31.57 cfs 130,864 cf

Link P-1: Proposed Drainage to Passaic River
Inflow=28.71 cfs 115,000 cf Primary=28.71 cfs 115,000 cf

[^1]Summary for Subcatchment E-1A: Existing Drainage to Existing Conveyance System (18" Pipe)
Runoff $=\quad 4.89$ cfs @ 12.17 hrs, Volume $=\quad 20,041 \mathrm{cf}$, Depth= 4.57"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=5.15"

	Area (sf)	CN D	Description		
*	43,147	98 In	Impervious Areas		
	9,429	80 >	>75\% Grass cover, Good, HSG D		
	52,576	95 W	Weighted Average		
	9,429	801	17.93\% Pervious Area		
	43,147	988	82.07\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry

Subcatchment E-1A: Existing Drainage to Existing Conveyance System (18" Pipe)

Summary for Subcatchment E-1B: Existing Drainage to Existing Conveyance System (42" Pipe)
Runoff $=13.91$ cfs @ 12.17 hrs, Volume= $58,001 \mathrm{cf}$, Depth= 4.91"
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=5.15"

	Area (sf)	CN	Description
141,668	98	Impervious Areas	
	98	100.00% Impervious Area	

Tc	Length (min)	Slope (feet)	Velocity (ft/ft)	Capacity (ft/sec)
10.0			Description	
(cfs)				

Subcatchment E-1B: Existing Drainage to Existing Conveyance System (42" Pipe)

Summary for Subcatchment E-1C: Existing Drainageto Existing Conveyance System (15" Pipe)

Runoff $=7.84$ cfs @ 12.17 hrs, Volume $=\quad 32,621 \mathrm{cf}$, Depth= 4.88"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=5.15"

	Area (sf)	CN D	Description		
*	78,544	98 Im	Impervious Areas		
	353	96 G	Gravel surface, HSG D		
	1,330	$80>$	>75\% Grass cover, Good, HSG D		
	80,227	98 V	Weighted Average		
	1,683	832	2.10\% Pervious Area		
	78,544	989	97.90\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry

Subcatchment E-1C: Existing Drainageto Existing Conveyance System (15" Pipe)

Summary for Subcatchment E-1D: Existing Drainage to Municipal System
Runoff $=\quad 4.93$ cfs @ 12.17 hrs, Volume= $20,201 \mathrm{cf}$, Depth= 4.58"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=5.15"

	Area (sf)	CN	Description		
*	43,589	98	Impervious Areas		
	9,345	80	>75\% Grass cover, Good, HSG D		
	52,934	95	Weighted Average 17.65\% Pervious Area 82.35\% Impervious Area		
	9,345	80			
	43,589	98			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry

Subcatchment E-1D: Existing Drainage to Municipal System

Summary for Subcatchment P-1A: Proposed Drainage to Existing Conveyance System (18" Pipe)

Runoff $=\quad 4.15$ cfs @ 12.17 hrs, Volume $=16,113 \mathrm{cf}$, Depth= $3.80^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=5.15"

Area (sf)	CN	Description
*	20,909	98
Impervious Areas		
29,969	80	$>75 \%$ Grass cover, Good, HSG D
50,878	87	Weighted Average
29,969	80	58.90% Pervious Area
20,909	98	41.10% Impervious Area

Tc (min)	Length $($ feet $)$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment P-1A: Proposed Drainage to Existing Conveyance System (18" Pipe)

Summary for Subcatchment P-1B: Proposed Drainage to Existing Conveyance System (42" Pipe)

Runoff $=12.89$ cfs @ 12.17 hrs, Volume $=52,247 \mathrm{cf}$, Depth= 4.40"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=5.15"

Area (sf)	CN	Description
103,691	98	Impervious Areas
38,867	80	>75\% Grass cover, Good, HSG D
142,558	93	Weighted Average
38,867	80	27.26\% Pervious Area
103,691	98	72.74\% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment P-1B: Proposed Drainage to Existing Conveyance System (42" Pipe)

Summary for Subcatchment P-1C: Proposed Drainage to Existing Conveyance System (15" Pipe)

Runoff $=\quad 7.33$ cfs @ 12.17 hrs, Volume $=\quad 29,650 \mathrm{cf}$, Depth= 4.38"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=5.15"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| * | 58,221 | 98 |
| :--- | ---: | :--- |
| Impervious Areas | | |
| 23,069 | 80 | $>75 \%$ Grass cover, Good, HSG D |
| 81,290 | 93 | Weighted Average |
| 23,069 | 80 | 28.38% Pervious Area |
| 58,221 | 98 | 71.62% Impervious Area |

| Tc
 (min) | Length
 (feet) |
| ---: | ---: | | Slope |
| ---: |
| $(\mathrm{ft} / \mathrm{ft})$ | | Velocity |
| ---: |
| $(\mathrm{ft} / \mathrm{sec})$ | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, Direct |
| :--- |

Subcatchment P-1C: Proposed Drainage to Existing Conveyance System (15" Pipe)

Summary for Subcatchment P-1D: Proposed Drainage to Municipal System
Runoff $=\quad 4.35$ cfs @ 12.17 hrs, Volume $=16,990 \mathrm{cf}$, Depth= 3.87"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=5.15"

	Area (sf)	CN D	Description		
*	23,598	98 Im	Impervious Areas $>75 \%$ Grass cover, Good, HSG D		
	29,081	80 >			
	52,679	88 W	Weighted Average 55.20\% Pervious Area 44.80\% Impervious Area		
	29,081	805			
	23,598	984			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry

Subcatchment P-1D: Proposed Drainage to Municipal System

Summary for Link E-1: Existing Drainage to Passaic River
Inflow Area = 327,405 sf, 93.75% Impervious, Inflow Depth $=4.80$ for 10-Year event
Inflow $=31.57$ cfs @ 12.17 hrs , Volume= $\quad 130,864 \mathrm{cf}$

Primary $=31.57$ cfs @ 12.17 hrs , Volume $=130,864 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min
Primary outflow $=$ Inflow, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link E-1: Existing Drainage to Passaic River

Summary for Link P-1: Proposed Drainage to Passaic River

Inflow Area = 327,405 sf, 63.05% Impervious, Inflow Depth $=4.21$ " for 10-Year event Inflow $=\quad 28.71$ cfs @ 12.17 hrs , Volume= $\quad 115,000 \mathrm{cf}$ Primary $=28.71$ cfs @ 12.17 hrs , Volume $=\quad 115,000 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Link P-1: Proposed Drainage to Passaic River

Time span=0.00-30.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}, 3001$ points
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv.
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
SubcatchmentE-1A: Existing Drainage to $\begin{gathered}\text { Runoff Area= }=52,576 \mathrm{sf} \\ \text { Tc }=10.0 \text { min } \quad \text { CN }\end{gathered}$ =80/98 Runoff $=6.11 \mathrm{cfs} 25,152 \mathrm{cf}$
SubcatchmentE-1B: Existing Drainage Runoff Area=141,668 sf 100.00% Impervious Runoff Depth $=6.10$ " $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=0 / 98$ Runoff=17.15 cfs 72,032 cf

SubcatchmentE-1C: Existing Drainageto Runoff Area=80,227 sf 97.90% Impervious Runoff Depth $=6.07$ " $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=83 / 98$ Runoff $=9.68 \mathrm{cfs} 40,555 \mathrm{cf}$

SubcatchmentE-1D: Existing Drainage to Runoff Area=52,934 sf 82.35% Impervious Runoff Depth $=5.75$ " $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff $=6.15 \mathrm{cfs} 25,348 \mathrm{cf}$

SubcatchmentP-1A: Proposed Drainage to Runoff Area=50,878 sf 41.10% Impervious Runoff Depth=4.92" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff $=5.34 \mathrm{cfs} 20,844 \mathrm{cf}$

SubcatchmentP-1B: Proposed Drainage Runoff Area=142,558 sf 72.74% Impervious Runoff Depth=5.55" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff=16.19 cfs $65,968 \mathrm{cf}$

SubcatchmentP-1C: Proposed Drainage to Runoff Area=81,290 sf 71.62\% Impervious Runoff Depth=5.53" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff $=9.21 \mathrm{cfs} 37,465 \mathrm{cf}$

SubcatchmentP-1D: Proposed Drainage to Runoff Area=52,679 sf 44.80% Impervious Runoff Depth $=4.99^{\prime \prime}$ $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff $=5.58 \mathrm{cfs} 21,909 \mathrm{cf}$

Link E-1: Existing Drainage to Passaic River Inflow=39.08 cfs 163,087 cf Primary=39.08 cfs 163,087 cf

Link P-1: Proposed Drainage to Passaic River
Inflow=36.33 cfs 146,186 cf Primary= 36.33 cfs 146,186 cf

Summary for Subcatchment E-1A: Existing Drainage to Existing Conveyance System (18" Pipe)
Runoff $=\quad 6.11$ cfs @ 12.17 hrs, Volume $=\quad 25,152 \mathrm{cf}$, Depth= $5.74{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=6.34"

Area (sf)	CN	Description
43,147	98	Impervious Areas
9,429	80	$>75 \%$ Grass cover, Good, HSG D
52,576	95	Weighted Average
9,429	80	17.93\% Pervious Area
43,147	98	82.07% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 (ft/ft) | Velocity
 (ft/sec) | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, Direct |
| :--- |

Subcatchment E-1A: Existing Drainage to Existing Conveyance System (18" Pipe)

Summary for Subcatchment E-1B: Existing Drainage to Existing Conveyance System (42" Pipe)
Runoff $=17.15$ cfs @ 12.17 hrs, Volume $=\quad 72,032 \mathrm{cf}$, Depth= 6.10"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=6.34"

	Area (sf)	CN	Description
*	141,668	98	Impervious Areas
141,668	98	100.00% Impervious Area	

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)

Subcatchment E-1B: Existing Drainage to Existing Conveyance System (42" Pipe)

Summary for Subcatchment E-1C: Existing Drainageto Existing Conveyance System (15" Pipe)

Runoff $=\quad 9.68$ cfs @ 12.17 hrs, Volume $=\quad 40,555 \mathrm{cf}$, Depth= 6.07"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=6.34"

	Area (sf)	CN D	Description		
*	78,544	98 Im	Impervious Areas		
	353	96	Gravel surface, HSG D		
	1,330	80 >	>75\% Grass cover, Good, HSG D		
	80,227	98 V	Weighted Average		
	1,683	83	2.10\% Pervious Area		
	78,544	989	97.90\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	$\begin{array}{r} \text { c } \begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array} \\ \hline \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
10.0					Direct Entry

Subcatchment E-1C: Existing Drainageto Existing Conveyance System (15" Pipe)

Summary for Subcatchment E-1D: Existing Drainage to Municipal System
Runoff $=\quad 6.15$ cfs @ 12.17 hrs, Volume $=\quad 25,348$ cf, Depth= $5.75^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=6.34"

	Area (sf)	CN D	Description		
*	43,589	98 Im	Impervious Areas		
	9,345	$80>$	>75\% Grass cover, Good, HSG D		
	52,934	95 W	Weighted Average		
	9,345	801	17.65\% Pervious Area		
	43,589	988	82.35\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry

Subcatchment E-1D: Existing Drainage to Municipal System

Summary for Subcatchment P-1A: Proposed Drainage to Existing Conveyance System (18" Pipe)

Runoff $=5.34$ cfs @ 12.17 hrs, Volume= $20,844 \mathrm{cf}$, Depth= 4.92"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=6.34"

Area (sf)	CN	Description
20,909	98	Impervious Areas
29,969	80	$>75 \%$ Grass cover, Good, HSG D
50,878	87	Weighted Average
29,969	80	58.90% Pervious Area
20,909	98	41.10% Impervious Area

Tc (min)	Length $($ feet $)$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment P-1A: Proposed Drainage to Existing Conveyance System (18" Pipe)

Summary for Subcatchment P-1B: Proposed Drainage to Existing Conveyance System (42" Pipe)

Runoff $=16.19$ cfs @ 12.17 hrs, Volume $=\quad 65,968 \mathrm{cf}$, Depth= $5.55^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=6.34"

Subcatchment P-1B: Proposed Drainage to Existing Conveyance System (42" Pipe)

Summary for Subcatchment P-1C: Proposed Drainage to Existing Conveyance System (15" Pipe)

Runoff $=9.21$ cfs @ 12.17 hrs, Volume $=\quad 37,465 \mathrm{cf}$, Depth= $5.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=6.34"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| * | 58,221 | 98 |
| :--- | ---: | :--- |
| Impervious Areas | | |
| 23,069 | 80 | $>75 \%$ Grass cover, Good, HSG D |
| 81,290 | 93 | Weighted Average |
| 23,069 | 80 | 28.38% Pervious Area |
| 58,221 | 98 | 71.62% Impervious Area |

| Tc
 (min) | Length
 (feet) |
| ---: | ---: | | Slope |
| ---: |
| $(\mathrm{ft} / \mathrm{ft})$ | | Velocity |
| ---: |
| $(\mathrm{ft} / \mathrm{sec})$ | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, Direct |
| :--- |

Subcatchment P-1C: Proposed Drainage to Existing Conveyance System (15" Pipe)

Summary for Subcatchment P-1D: Proposed Drainage to Municipal System
Runoff $=5.58$ cfs @ 12.17 hrs, Volume= $\quad 21,909 \mathrm{cf}$, Depth= 4.99"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=6.34"

	Area (sf)	CN	Description		
*	23,598	98 I	Impervious Areas $>75 \%$ Grass cover, Good, HSG D		
	29,081	$80>$			
	52,679	88	Weighted Average 55.20\% Pervious Area 44.80\% Impervious Area		
	29,081	80			
	23,598	98			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
10.0					Direct Entry

Subcatchment P-1D: Proposed Drainage to Municipal System

Summary for Link E-1: Existing Drainage to Passaic River
Inflow Area = 327,405 sf, 93.75% Impervious, Inflow Depth $=5.98$ " for $25-$ Year event Inflow $=39.08$ cfs @ 12.17 hrs , Volume= $\quad 163,087 \mathrm{cf}$ Primary $=39.08$ cfs @ 12.17 hrs , Volume $=163,087 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link E-1: Existing Drainage to Passaic River

Summary for Link P-1: Proposed Drainage to Passaic River

Inflow Area = 327,405 sf, 63.05% Impervious, Inflow Depth $=5.36$ " for $25-$ Year event Inflow $=36.33$ cfs @ 12.17 hrs , Volume= $\quad 146,186 \mathrm{cf}$ Primary $=36.33$ cfs @ 12.17 hrs , Volume $=146,186 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Link P-1: Proposed Drainage to Passaic River

Time span=0.00-30.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}, 3001$ points
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv.
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
SubcatchmentE-1A: Existing Drainage to $\begin{gathered}\text { Runoff Area= }=52,576 \mathrm{sf} \\ \text { Tc }=10.0 \text { min } \quad 8.07 \% \text { Impervious }\end{gathered}$ Runoff Depth $=70 / 98$ Runoff $=8.29 \mathrm{cfs} 34,402 \mathrm{cf}$
SubcatchmentE-1B: Existing Drainage Runoff Area=141,668 sf 100.00% Impervious Runoff Depth $=8.24$ " $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=0 / 98$ Runoff=22.97 cfs $97,278 \mathrm{cf}$

SubcatchmentE-1C: Existing Drainageto Runoff Area=80,227 sf 97.90% Impervious Runoff Depth $=8.20$ " $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=83 / 98$ Runoff $=12.98 \mathrm{cfs} 54,836 \mathrm{cf}$

SubcatchmentE-1D: Existing Drainage to Runoff Area=52,934 sf 82.35% Impervious Runoff Depth=7.86" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff $=8.35 \mathrm{cfs} 34,663 \mathrm{cf}$

SubcatchmentP-1A: Proposed Drainage to Runoff Area=50,878 sf 41.10% Impervious Runoff Depth $=6.97$ " $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff=7.50 cfs 29,533 cf

SubcatchmentP-1B: Proposed Drainage Runoff Area=142,558 sf 72.74\% Impervious Runoff Depth=7.65" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff $=22.14 \mathrm{cfs} 90,881 \mathrm{cf}$

SubcatchmentP-1C: Proposed Drainage to Runoff Area=81,290 sf 71.62% Impervious Runoff Depth=7.63" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff $=12.60 \mathrm{cfs} 51,659 \mathrm{cf}$

SubcatchmentP-1D: Proposed Drainage to Runoff Area=52,679 sf 44.80% Impervious Runoff Depth=7.05" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=80 / 98$ Runoff $=7.81 \mathrm{cfs} 30,929 \mathrm{cf}$

Link E-1: Existing Drainage to Passaic River Inflow=52.59 cfs 221,178 cf Primary=52.59 cfs 221,178 cf

Link P-1: Proposed Drainage to Passaic River
Inflow=50.05 cfs 203,003 cf Primary=50.05 cfs 203,003 cf

> Total Runoff Area $=654,810$ sf Runoff Volume $=424,181$ cf Average Runoff Depth $=7.77$ " 21.60% Pervious $=141,443 \mathrm{sf} \quad 78.40 \%$ Impervious $=513,367 \mathrm{sf}$

Summary for Subcatchment E-1A: Existing Drainage to Existing Conveyance System (18" Pipe)
Runoff $=8.29$ cfs @ 12.17 hrs, Volume $=34,402 \mathrm{cf}$, Depth= $7.85{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=8.48"

Area (sf)	CN	Description
43,147	98	Impervious Areas
9,429	80	$>75 \%$ Grass cover, Good, HSG D
52,576	95	Weighted Average
9,429	80	17.93\% Pervious Area
43,147	98	82.07% Impervious Area

\(\left.$$
\begin{array}{rrrl}\begin{array}{r}\text { Tc } \\
(\mathrm{min})\end{array} & \begin{array}{r}\text { Length } \\
(\mathrm{feet})\end{array} & \begin{array}{r}\text { Slope } \\
(\mathrm{ft} / \mathrm{ft})\end{array} & \begin{array}{r}\text { Velocity } \\
(\mathrm{ft} / \mathrm{sec})\end{array}\end{array}
$$ \begin{array}{r}Capacity

(\mathrm{cfs})\end{array}\right)\) Description | Direct Entry, Direct |
| :--- |

Subcatchment E-1A: Existing Drainage to Existing Conveyance System (18" Pipe)

Summary for Subcatchment E-1B: Existing Drainage to Existing Conveyance System (42" Pipe)
Runoff $=22.97$ cfs @ 12.17 hrs, Volume= 97,278 cf, Depth= 8.24"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=8.48"

	Area (sf)	CN	Description
*	141,668	98	Impervious Areas
141,668	98	100.00% Impervious Area	

Tc	Length (min)	Slope (feet)	Velocity (ft/ft)	Capacity (ft/sec)
10.0			Description	
(cfs)				

Subcatchment E-1B: Existing Drainage to Existing Conveyance System (42" Pipe)

Summary for Subcatchment E-1C: Existing Drainageto Existing Conveyance System (15" Pipe)

Runoff $=12.98$ cfs @ 12.17 hrs, Volume $=\quad 54,836 \mathrm{cf}$, Depth= 8.20"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=8.48"

	Area (sf)	CN D	Description		
*	78,544	98 Im	Impervious Areas		
	353	96	Gravel surface, HSG D		
	1,330	80 >	>75\% Grass cover, Good, HSG D		
	80,227	98 V	Weighted Average		
	1,683	83	2.10\% Pervious Area		
	78,544	989	97.90\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	$\begin{array}{r} \text { c } \begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array} \\ \hline \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
10.0					Direct Entry

Subcatchment E-1C: Existing Drainageto Existing Conveyance System (15" Pipe)

Summary for Subcatchment E-1D: Existing Drainage to Municipal System
Runoff $=8.35$ cfs @ 12.17 hrs, Volume $=34,663 \mathrm{cf}$, Depth= 7.86

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=8.48"

	Area (sf)	CN D	Description		
*	43,589	98 Im	Impervious Areas		
	9,345	$80>$	>75\% Grass cover, Good, HSG D		
	52,934	95 W	Weighted Average		
	9,345	801	17.65\% Pervious Area		
	43,589	988	82.35\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry

Subcatchment E-1D: Existing Drainage to Municipal System

Summary for Subcatchment P-1A: Proposed Drainage to Existing Conveyance System (18" Pipe)

Runoff $=7.50$ cfs @ 12.17 hrs, Volume $=\quad 29,533 \mathrm{cf}$, Depth= 6.97"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=8.48"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| * | 20,909 | 98 |
| :--- | ---: | :--- |
| Impervious Areas | | |
| 29,969 | 80 | $>75 \%$ Grass cover, Good, HSG D |
| 50,878 | 87 | Weighted Average |
| 29,969 | 80 | 58.90% Pervious Area |
| 20,909 | 98 | 41.10% Impervious Area |

Tc (min)	Length $($ feet $)$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment P-1A: Proposed Drainage to Existing Conveyance System (18" Pipe)

Summary for Subcatchment P-1B: Proposed Drainage to Existing Conveyance System (42" Pipe)

Runoff $=22.14$ cfs @ 12.17 hrs, Volume $=\quad 90,881 \mathrm{cf}$, Depth= $7.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=8.48"

Area (sf)	CN	Description
103,691	98	Impervious Areas
38,867	80	$>75 \%$ Grass cover, Good, HSG D
142,558	93	Weighted Average
38,867	80	27.26% Pervious Area
103,691	98	72.74% Impervious Area

Tc (min)	Length $($ feet $)$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment P-1B: Proposed Drainage to Existing Conveyance System (42" Pipe)

Summary for Subcatchment P-1C: Proposed Drainage to Existing Conveyance System (15" Pipe)

Runoff $=12.60$ cfs @ 12.17 hrs, Volume= $51,659 \mathrm{cf}$, Depth= $7.63^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=8.48"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| * | 58,221 | 98 |
| :--- | ---: | :--- |
| Impervious Areas | | |
| 23,069 | 80 | $>75 \%$ Grass cover, Good, HSG D |
| 81,290 | 93 | Weighted Average |
| 23,069 | 80 | 28.38% Pervious Area |
| 58,221 | 98 | 71.62% Impervious Area |

| Tc
 (min) | Length
 (feet) |
| ---: | ---: | | Slope |
| ---: |
| $(\mathrm{ft} / \mathrm{ft})$ | | Velocity |
| ---: |
| $(\mathrm{ft} / \mathrm{sec})$ | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, Direct |
| :--- |

Subcatchment P-1C: Proposed Drainage to Existing Conveyance System (15" Pipe)

Summary for Subcatchment P-1D: Proposed Drainage to Municipal System
Runoff $=7.81$ cfs @ 12.17 hrs, Volume= $\quad 30,929 \mathrm{cf}$, Depth= 7.05

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/lmperv., Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=8.48"

Area (sf)	CN	Description
*	23,598	98
Impervious Areas		
29,081	80	$>75 \%$ Grass cover, Good, HSG D
52,679	88	Weighted Average
29,081	80	55.20% Pervious Area
23,598	98	44.80% Impervious Area

\(\left.$$
\begin{array}{rr}\begin{array}{r}\text { Tc } \\
(\mathrm{min})\end{array} & \begin{array}{r}\text { Length } \\
(\mathrm{feet})\end{array}\end{array}
$$ $$
\begin{array}{r}\text { Slope } \\
(\mathrm{ft} / \mathrm{ft})\end{array}
$$ $$
\begin{array}{r}\text { Velocity } \\
(\mathrm{ft} / \mathrm{sec})\end{array}
$$ \begin{array}{r}Capacity

(\mathrm{cfs})\end{array}\right)\) Description | Direct Entry, Direct |
| :--- |

Subcatchment P-1D: Proposed Drainage to Municipal System

Summary for Link E-1: Existing Drainage to Passaic River

Inflow Area $=$	$327,405 \mathrm{sf}$,	93.75% Impervious,	Inflow Depth $=8.11 "$	for $100-$ Year event
Inflow	$=$	$52.59 \mathrm{cfs} @$	12.17 hrs , Volume=	$221,178 \mathrm{cf}$
Primary	$=$	$52.59 \mathrm{cfs} @ 12.17 \mathrm{hrs}$, Volume $=$	$221,178 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Primary outflow $=$ Inflow, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link E-1: Existing Drainage to Passaic River

Summary for Link P-1: Proposed Drainage to Passaic River

Inflow Area $=\quad 327,405$ sf, 63.05\% Impervious, Inflow Depth $=7.44$ " for 100-Year event Inflow $=50.05 \mathrm{cfs} @ 12.17 \mathrm{hrs}$, Volume= $203,003 \mathrm{cf}$ Primary = 50.05 cfs @ 12.17 hrs , Volume $=\quad 203,003 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Link P-1: Proposed Drainage to Passaic River

Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (\%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	1A-E100	6.39	18	Cir	25.000	250.91	251.04	0.520	251.97	252.10	0.37	252.46	End	Grate
2	E100-D100	4.39	18	Cir	12.000	251.04	251.83	6.583	252.46	252.63	n/a	252.63 j	1	Manhole
3	D100-R100	4.39	15	Cir	10.000	253.95	254.05	1.000	254.71	254.90	0.36	254.90	2	None
4	R100-R101	4.14	15	Cir	68.000	254.05	254.73	1.000	254.90	255.55	n/a	255.55 j	3	None
5	R101-D101	3.86	15	Cir	24.000	254.73	254.97	1.000	255.55	255.76	n/a	255.76 j	4	Manhole
6	D101-YD01	3.87	15	Cir	30.000	254.97	255.27	1.000	255.76	256.06	0.17	256.06	5	Grate
7	YD01-D102	3.70	15	Cir	64.000	255.27	255.91	1.000	256.06	256.69	n/a	256.69 j	6	Manhole
8	D102-D103	1.39	15	Cir	24.000	255.91	256.15	1.000	256.69	256.61	0.09	256.61	7	Grate
9	D103-D104	0.53	15	Cir	70.000	256.15	256.85	1.000	256.61	257.13	n/a	257.13 j	8	Grate
10	R100-BLDG	0.30	6	Cir	5.000	254.05	254.15	2.000	254.90*	254.91*	0.04	254.95	3	None
11	R101-BLDG	0.30	6	Cir	5.000	254.73	254.83	2.000	255.55*	255.57*	0.04	255.60	4	None
12	D102-D105	2.38	15	Cir	155.000	255.91	259.79	2.503	256.69	260.41	n/a	260.41 j	7	Grate
13	1B-D200	16.30	42	Cir	125.000	248.21	248.52	0.248	249.58	249.89	0.34	250.23	End	Manhole
14	D200-D201	15.79	24	Cir	11.000	250.25	250.36	1.000	251.48	251.79	n/a	251.79	13	Manhole
15	D201-D202	14.77	18	Cir	20.000	250.36	250.56	1.000	251.86*	252.26*	1.09	253.34	14	Manhole
16	D202-D203	10.37	18	Cir	56.000	250.56	251.12	1.000	253.34*	253.89*	0.27	254.16	15	Combination
17	D203-D204	9.38	18	Cir	46.000	251.12	251.58	1.000	254.16*	254.52*	0.44	254.96	16	Manhole
18	D204-D205	8.88	18	Cir	83.000	251.58	252.41	1.000	254.96*	255.56*	0.20	255.75	17	Grate
19	D205-D206	8.56	18	Cir	70.000	252.41	253.11	1.000	255.75*	256.22*	0.18	256.40	18	Grate
20	D206-D207	7.29	18	Cir	114.000	253.11	254.25	1.000	256.40*	256.95*	0.26	257.22	19	Manhole
21	D207-D208	4.66	15	Cir	35.000	254.25	254.60	1.000	257.22*	257.40*	0.25	257.65	20	Grate
22	D208-D209	3.15	15	Cir	39.000	254.60	254.99	1.000	257.65*	257.75*	0.08	257.82	21	Manhole
23	D209-D210	3.21	15	Cir	86.000	254.99	255.85	1.000	257.82*	258.04*	0.11	258.14	22	Manhole
24	D210-D211	1.42	15	Cir	53.000	255.85	256.38	1.000	258.14*	258.17*	0.02	258.19	23	Combination
Project File: 2019-10-30_Pipe Sizing.stm									Number of lines: 138			Run Date: 10/31/2019		
NOTES: Return period = 25 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.														

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (\%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
25	D200-R200	0.59	6	Cir	5.000	257.36	257.41	1.000	257.80	257.85	0.16	258.01	13	None
26	R200-R201	0.59	6	Cir	11.000	257.41	257.52	1.000	258.01*	258.13*	0.14	258.28	25	None
27	R201-R202	0.30	6	Cir	68.000	257.52	258.20	1.000	258.28	258.52	0.08	258.60	26	None
28	R202-BLDG	0.30	6	Cir	5.000	258.20	258.25	1.000	258.60	258.53	0.11	258.53	27	None
29	R201-BLDG	0.30	6	Cir	5.000	257.52	257.57	1.000	258.28*	258.29*	0.04	258.33	26	None
30	D201-D212	1.18	15	Cir	48.000	256.77	257.25	1.000	257.13	257.68	0.16	257.68	14	Combination
31	D202-YD09	1.12	6	Cir	22.170	257.30	257.52	0.992	257.80*	258.69*	0.75	259.45	15	Grate
32	YD09 - YD10	0.57	6	Cir	68.380	257.52	258.20	0.994	259.45*	260.15*	0.20	260.35	31	Grate
33	YD10-BLDG	0.30	6	Cir	5.000	258.20	258.25	1.000	260.35*	260.36*	0.04	260.40	32	None
34	YD09-BLDG	0.30	6	Cir	5.000	257.57	257.62	1.000	259.45*	259.46*	0.04	259.50	31	None
35	D202-YD03	3.83	15	Cir	84.000	257.17	258.01	1.000	257.86	258.80	n/a	258.80	15	Grate
36	YD03-YD04	3.02	15	Cir	68.000	258.01	258.69	1.000	258.80	259.39	n/a	259.39 j	35	Grate
37	YD04-D213	1.91	15	Cir	30.000	258.69	258.99	1.000	259.39	259.54	n/a	259.54 j	36	Manhole
38	D213-YD05	0.23	6	Cir	16.000	258.99	259.15	1.000	259.54	259.56	0.01	259.57	37	Grate
39	YD05-YD06	0.12	6	Cir	26.000	259.15	259.41	1.000	259.57	259.58	n/a	259.58 j	38	Grate
40	YD03-BLDG	0.30	6	Cir	35.000	258.01	258.36	1.000	258.80	258.86	0.04	258.90	35	None
41	YD03-BLDG	0.30	6	Cir	11.000	258.01	258.12	1.000	258.80*	258.83*	0.02	258.85	35	None
42	YD03-BLDG	0.30	6	Cir	5.000	258.12	258.17	1.000	258.85*	258.86*	0.04	258.90	41	None
43	YD04 - BLDG	0.36	6	Cir	35.000	258.69	259.04	1.000	259.39	259.52	0.05	259.58	36	None
44	YD04 - BLDG	0.36	6	Cir	11.000	258.69	258.80	1.000	259.39*	259.43*	0.02	259.46	36	None
45	YD04 - BLDG	0.36	6	Cir	5.000	258.80	258.85	1.000	259.46*	259.48*	0.05	259.53	44	None
46	D213-R203	1.69	15	Cir	24.000	260.08	260.32	1.000	260.52	260.84	n/a	260.84	37	None
47	R203-YD07	1.46	15	Cir	24.000	260.32	260.56	1.000	260.84	261.04	n/a	261.04 j	46	Grate
48	YD07-YD08	1.36	15	Cir	21.000	260.56	260.77	1.000	261.04	261.23	n/a	261.23 j	47	Grate
Project File: 2019-10-30_Pipe Sizing.stm									Number of lines: 138			Run Date: 10/31/2019		
NOTES: Return period = 25 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.														

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (\%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
49	YD08-D214	1.20	15	Cir	16.000	260.77	260.93	1.000	261.23	261.36	n/a	261.36 j	48	Combination
50	R203-BLDG	0.24	6	Cir	6.000	260.32	260.38	1.000	260.84	260.84	0.03	260.87	46	None
51	D204-D215	0.90	15	Cir	21.000	251.58	251.79	1.000	254.96*	254.97*	0.00	254.97	17	Grate
52	D215-D216	0.41	15	Cir	70.000	251.79	252.49	1.000	254.97*	254.97*	0.00	254.98	51	Grate
53	D207-D217	2.68	15	Cir	43.000	261.50	261.93	1.000	262.06	262.59	n/a	262.59	20	Combination
54	D217-D218	1.57	15	Cir	60.000	261.93	262.53	1.000	262.59	263.03	n/a	263.03 j	53	Manhole
55	D218-R204	1.37	12	Cir	13.000	264.60	264.73	1.000	265.03	265.22	n/a	265.22	54	None
56	R204-R205	1.14	12	Cir	42.000	264.73	265.15	1.000	265.22	265.60	n/a	265.60 j	55	None
57	R205-R206	0.91	12	Cir	42.000	265.15	265.57	1.000	265.60	265.97	n/a	265.97 j	56	None
58	R206-BLDG	0.24	6	Cir	10.000	265.57	265.67	1.000	265.97	265.92	n/a	265.92	57	None
59	R204-BLDG	0.24	6	Cir	10.000	264.73	264.83	1.000	265.22	265.08	n/a	265.08	55	None
60	R205-BLDG	0.24	6	Cir	10.000	265.15	265.25	1.000	265.60	265.50	n/a	265.50	56	None
61	D217-R208	0.22	6	Cir	69.000	264.60	265.29	1.000	264.82	265.53	n/a	265.53	54	None
62	R208-YD11	0.23	6	Cir	16.000	265.29	265.45	1.000	265.53	265.69	0.05	265.69	61	Grate
63	YD11-YD12	0.17	6	Cir	32.000	265.45	265.77	1.000	265.69	265.98	n/a	265.98 j	62	Grate
64	YD12-YD13	0.11	6	Cir	32.000	265.77	266.09	1.000	265.98	266.26	n/a	266.26 j	63	Grate
65	D210-R209	1.84	12	Cir	29.000	258.75	259.04	1.000	259.26	259.62	n/a	259.62	23	None
66	R209-R210	0.96	12	Cir	68.000	259.04	259.72	1.000	259.62	260.13	n/a	260.13 j	65	None
67	R209-BLDG	0.30	6	Cir	37.000	259.04	259.41	1.000	259.62	259.73	0.08	259.81	65	None
68	R209-YD14	0.61	6	Cir	11.000	259.04	259.15	1.000	259.62*	259.75*	0.08	259.82	65	Grate
69	YD14 - BLDG	0.30	6	Cir	10.000	259.15	259.25	1.000	259.82*	259.85*	0.04	259.89	68	None
70	R210-BLDG	0.30	6	Cir	37.000	259.72	260.09	1.000	260.13	260.37	n/a	260.37 j	66	None
71	R210-YD15	0.66	6	Cir	11.000	259.72	259.83	1.000	260.22	260.33	0.09	260.42	66	Grate
72	YD15 - BLDG	0.30	6	Cir	10.000	259.83	259.93	1.000	260.42	260.43	0.04	260.47	71	None
Project File: 2019-10-30_Pipe Sizing.stm									Number of lines: 138			Run Date: 10/31/2019		
NOTES: Return period = 25 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.														

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (\%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
73	R206-R207	0.67	12	Cir	30.000	265.57	265.87	1.000	265.97	266.21	n/a	266.21 j	57	None
74	R207-D219	0.68	12	Cir	25.000	265.87	266.12	1.000	266.21	266.46	n/a	266.46	73	Grate
75	1C-D300	9.63	15	Cir	50.000	244.75	245.00	0.500	246.00*	247.11*	1.12	248.23	End	Grate
76	D300-D301	9.31	15	Cir	24.000	248.50	249.22	3.000	249.37	250.39	n/a	250.39	75	Manhole
77	D301-D302	8.15	15	Cir	69.000	249.22	250.60	2.000	250.39	251.72	n/a	251.72 j	76	Manhole
78	D302-D303	7.36	15	Cir	30.000	250.75	251.05	1.000	252.00*	252.39*	0.80	253.19	77	Grate
79	D303-D304	4.08	15	Cir	114.000	251.05	252.19	1.000	253.19*	253.65*	0.26	253.91	78	Grate
80	D304-D305	3.24	15	Cir	66.000	252.19	252.85	1.000	253.91	254.06	0.06	254.12	79	Grate
81	D305-D306	2.44	15	Cir	62.000	252.85	253.47	1.000	254.12	254.16	0.10	254.26	80	Grate
82	D306-D307	1.89	15	Cir	70.000	253.47	254.17	1.000	254.26	254.72	n/a	254.72 j	81	Grate
83	D307-D308	1.40	15	Cir	62.000	254.17	254.79	1.000	254.72	255.26	n/a	255.26 j	82	Grate
84	D308-D309	1.12	15	Cir	70.000	254.79	255.49	1.000	255.26	255.91	n/a	255.91 j	83	Grate
85	D301-R300	0.60	8	Cir	10.000	254.17	254.27	1.000	254.50	254.63	n/a	254.63	76	None
86	R300-R301	0.30	8	Cir	21.000	254.27	254.48	1.000	254.63	254.73	n/a	254.73 j	85	None
87	R301-BLDG	0.30	6	Cir	5.000	254.48	254.53	1.000	254.74	254.81	0.11	254.81	86	None
88	R300-R302	0.30	8	Cir	48.000	254.27	254.75	1.000	254.63	255.00	n/a	255.00 j	85	None
89	R302-BLDG	0.30	6	Cir	5.000	254.75	254.80	1.000	255.01	255.08	0.11	255.08	88	None
90	D301-YD16	0.69	8	Cir	32.000	252.22	252.54	1.000	252.58	252.93	0.25	252.93	76	Grate
91	YD16-YD17	0.35	8	Cir	68.000	252.54	253.22	1.000	252.93	253.50	n/a	253.50 j	90	Grate
92	YD17-BLDG	0.30	6	Cir	7.000	253.22	253.29	1.000	253.50	253.57	0.11	253.57	91	None
93	YD16 - BLDG	0.30	6	Cir	7.000	252.54	252.61	1.000	252.93	252.89	0.11	252.89	90	None
94	D302-D310	0.89	15	Cir	42.000	254.58	255.00	1.000	254.89	255.37	n/a	255.37	77	Combination
95	D303-R303	2.78	15	Cir	75.000	253.85	254.60	1.000	254.42	255.27	n/a	255.27	78	None
96	R303-R304	1.71	15	Cir	69.000	254.60	255.29	1.000	255.27	255.81	n/a	255.81 j	95	None
Project File: 2019-10-30_Pipe Sizing.stm									Number of lines: 138			Run Date: 10/31/2019		
NOTES: Return period = 25 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.														

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (\%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
97	R304-R305	0.87	15	Cir	26.000	255.29	255.55	1.000	255.81	255.91	n/a	255.91 j	96	None
98	R303-BLDG	0.30	6	Cir	37.000	254.60	254.97	1.000	255.27	255.37	0.05	255.42	95	None
99	R303-YD18	0.82	6	Cir	11.000	254.60	254.71	1.000	255.27*	255.50*	0.14	255.64	95	Grate
100	YD18-BLDG	0.30	6	Cir	10.000	254.71	254.81	1.000	255.64*	255.67*	0.04	255.71	99	None
101	R304-BLDG	0.30	6	Cir	37.000	255.29	255.66	1.000	255.81	255.94	n/a	256.05 j	96	None
102	R304-YD19	0.57	6	Cir	11.000	255.29	255.40	1.000	255.81	255.90	0.07	255.96	96	Grate
103	YD19 - BLDG	0.30	6	Cir	10.000	255.40	255.50	1.000	255.96	255.99	0.04	256.03	102	None
104	R305-YD20	0.27	6	Cir	37.000	255.55	255.92	1.000	255.91	256.18	n/a	256.18 j	97	Grate
105	YD20-YD21	0.22	6	Cir	25.000	255.92	256.17	1.000	256.18	256.40	n/a	256.40 j	104	Grate
106	R305-YD22	0.60	6	Cir	21.000	255.55	255.76	1.000	256.01	256.22	0.08	256.30	97	Grate
107	YD22-YD23	0.27	6	Cir	25.000	255.76	256.01	1.000	256.30	256.34	0.03	256.37	106	Grate
108	YD23-YD24	0.11	6	Cir	18.000	256.01	256.19	1.000	256.37	256.36	0.06	256.36	107	Grate
109	1D-D400	3.96	15	Cir	100.000	236.31	243.81	7.500	236.71	244.61	0.52	244.61	End	Grate
110	D400-D401	2.56	15	Cir	10.000	244.67	244.97	3.000	245.08	245.61	0.25	245.61	109	Manhole
111	D401-R400	1.88	15	Cir	135.000	248.00	252.05	3.000	248.35	252.60	n/a	252.60	110	None
112	R400-R401	1.17	15	Cir	132.000	252.05	256.01	3.000	252.60	256.44	n/a	256.44 j	111	None
113	D401-R402	0.75	10	Cir	18.000	248.00	251.60	20.000	248.16	251.98	0.15	251.98	110	None
114	R402-R403	0.30	6	Cir	31.000	251.60	251.91	1.000	251.98	252.19	n/a	252.19 j	113	None
115	R403-BLDG	0.30	6	Cir	3.000	251.91	251.94	1.000	252.19	252.22	0.11	252.22	114	None
116	R402-R404	0.46	6	Cir	37.000	251.60	251.97	1.000	251.98	252.31	0.16	252.31	113	None
117	R404-R405	0.16	6	Cir	17.000	251.97	252.14	1.000	252.31	252.34	n/a	252.34 j	116	None
118	R405-YD25	0.16	6	Cir	11.000	252.14	252.25	1.000	252.34	252.45	0.08	252.45	117	Grate
119	YD25-YD26	0.11	6	Cir	25.000	252.25	252.50	1.000	252.45	252.66	n/a	252.66 j	118	Grate
120	R404-BLDG	0.30	6	Cir	7.000	251.97	252.04	1.000	252.31	252.32	0.11	252.32	116	None
Project File: 2019-10-30_Pipe Sizing.stm									Number of lines: 138			Run Date: 10/31/2019		
NOTES: Return period = 25 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.														

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (\%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
121	R400-R406	0.78	10	Cir	15.000	252.05	252.20	1.000	252.60	252.59	n/a	252.59 j	111	None
122	R406-R407	0.30	6	Cir	34.000	252.20	252.54	1.000	252.59	252.82	n/a	252.82 j	121	None
123	R407-BLDG	0.30	6	Cir	10.000	252.54	252.64	1.000	252.82	252.92	0.11	252.92	122	None
124	R406-R408	0.49	6	Cir	34.000	252.20	252.54	1.000	252.59	252.90	n/a	253.06 j	121	None
125	R408-R409	0.19	6	Cir	14.000	252.54	252.68	1.000	253.06	253.07	0.02	253.09	124	None
126	R409-YD27	0.19	6	Cir	15.000	252.68	252.83	1.000	253.09	253.05	0.09	253.05	125	Grate
127	YD27-YD28	0.13	6	Cir	25.000	252.83	253.08	1.000	253.05	253.26	n/a	253.26 j	126	Grate
128	R408-BLDG	0.30	6	Cir	10.000	252.54	252.64	1.000	253.06	253.08	0.04	253.12	124	None
129	R401-R410	1.17	10	Cir	15.000	256.01	256.16	1.000	256.44	256.64	0.20	256.64	112	None
130	R410-R411	0.30	6	Cir	34.000	256.16	256.50	1.000	256.64	256.78	n/a	256.78 j	129	None
131	R411-BLDG	0.30	6	Cir	10.000	256.50	256.60	1.000	256.78	256.88	0.11	256.88	130	None
132	R410-R412	0.89	6	Cir	34.000	256.16	256.50	1.000	256.66*	257.51*	0.32	257.83	129	None
133	R412-R413	0.60	6	Cir	14.000	256.50	256.64	1.000	257.83*	257.99*	0.11	258.10	132	None
134	R413-YD29	0.60	6	Cir	15.000	256.64	256.79	1.000	258.10*	258.27*	0.16	258.43	133	Grate
135	YD29 - YD30	0.50	6	Cir	25.000	256.79	257.04	1.000	258.43*	258.63*	0.05	258.68	134	Grate
136	YD30 - YD31	0.35	6	Cir	32.000	257.04	257.36	1.000	258.68*	258.81*	0.03	258.84	135	Grate
137	YD31-YD32	0.21	6	Cir	37.000	257.36	257.73	1.000	258.84*	258.89*	0.02	258.90	136	Grate
138	R412-BLDG	0.30	6	Cir	10.000	256.50	256.60	1.000	257.83*	257.86*	0.04	257.89	132	None
Project File: 2019-10-30_Pipe Sizing.stm									Number of lines: 138			Run Date: 10/31/2019		
NOTES: Return period = 25 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.														

Line Profile (Line 2) - E100 - D100

Line Profile (Line 3) - D100 - R100

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
4	4.14	254.05	254.73	0.85	0.82	0.82	254.90	255.55 j	255.55	4.66	4.83	5.80	5.12

	$\begin{aligned} & \text { Q } \\ & \text { (cfs) } \end{aligned}$	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
7	3.70	255.27	255.91	0.79	0.78	0.78	256.06	256.69 j	256.69	4.49	4.62	4.48	3.34

Line Profile (Line 8) - D102 - D103

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
9	0.53	256.15	256.85	0.46	0.28	0.28	256.61	257.13 j	257.13	1.27	2.53	2.45	1.75

Line Profile (Line 12) - D102 - D105

		Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#	$\begin{aligned} & Q \\ & \text { (cfs) } \end{aligned}$	Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
12	2.38	255.91	259.79	0.78	0.62	0.62	256.69	260.41 j	260.41	2.97	3.95	3.34	2.88

Line Profile (Line 13) - 1B - D200

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
13	16.30	248.21	248.52	3.50	3.22	3.26	251.71	251.74	251.78	1.69	1.76	8.29	8.20

Line Profile (Line 14) - D200 - D201

Line Profile (Line 15) - D201 -D202

Line \#	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
15	14.77	250.36	250.56	1.50	1.50	2.78	251.86	252.26	253.34	8.36	8.36	8.77	8.11
Project File:								No. Lines: 138			Run Date:	: 10/31/2019	

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
16	10.37	250.56	251.12	1.50	1.50	3.04	253.34	253.89	254.16	5.87	5.87	8.11	6.88

Line \#	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
17	9.38	251.12	251.58	1.50	1.50	3.38	254.16	254.52	254.96	5.31	5.31	6.88	5.72

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
18	8.88	251.58	252.41	1.50	1.50	3.34	254.96	255.56	255.75	5.03	5.03	5.72	7.59

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn $(\mathrm{ft} / \mathrm{s})$	Up (ft/s)	Dn (ft)	Up (ft)
19	8.56	252.41	253.11	1.50	1.50	3.29	255.75	256.22	256.40	4.85	4.84	7.59	6.47

Line Profile (Line 20) - D206-D207

	$\begin{aligned} & \text { Q } \\ & \text { (cfs) } \end{aligned}$	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
20	7.29	253.11	254.25	1.50	1.50	2.97	256.40	256.95	257.22	4.13	4.13	6.47	8.75

Line \#	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
21	4.66	254.25	254.60	1.25	1.25	3.05	257.22	257.40	257.65	3.80	3.80	9.00	8.57
Project File:								No. Lines: 138			Run Date:	10/31/2019	

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
22	3.15	254.60	254.99	1.25	1.25	2.83	257.65	257.75	257.82	2.57	2.57	8.57	8.95

Line \#	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
23	3.21	254.99	255.85	1.25	1.25	2.29	257.82	258.04	258.14	2.62	2.62	8.95	4.65

	$\begin{aligned} & \text { Q } \\ & \text { (cfs) } \end{aligned}$	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
24	1.42	255.85	256.38	1.25	1.25	1.81	258.14	258.17	258.19	1.15	1.15	4.65	1.77

		Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#	$\begin{aligned} & Q \\ & \text { (cfs) } \end{aligned}$	Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
27	0.30	257.52	258.20	0.50	0.32	0.40	258.28	258.52	258.60	1.54	2.31	2.98	2.30

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
30	1.18	256.77	257.25	0.36	0.43	0.43	257.13	257.68	257.68	4.01	3.18	2.61	1.75

		Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
32	0.57	257.52	258.20	0.50	0.50	2.15	259.45	260.15	260.35	2.90	2.89	1.73	1.05

Line Profile (Line 33) - YD10 - BLDG

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
35	3.83	257.17	258.01	0.69	0.79	0.79	257.86	258.80	258.80	5.48	4.68	1.75	2.99

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
36	3.02	258.01	258.69	0.79	0.70	0.70	258.80	259.39 j	259.39	3.69	4.28	2.99	2.31

Line Profile (Line 38) - D213 - YD05

Line Profile (Line 40) - YD03 - BLDG

Line Profile (Line 42) - YD03 - BLDG

Line Profile (Line 45) - YD04 - BLDG

Line Profile (Line 47) - R203 - YD07

Line Profile (Line 49) - YD08 - D214

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
52	0.41	251.79	252.49	1.25	1.25	2.49	254.97	254.97	254.98	0.34	0.34	4.81	4.11

	$\begin{aligned} & \text { Q } \\ & \text { (cfs) } \end{aligned}$	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
53	2.68	261.50	261.93	0.56	0.66	0.66	262.06	262.59	262.59	5.02	4.11	1.75	2.82

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
54	1.57	261.93	262.53	0.66	0.50	0.50	262.59	263.03 j	263.03	2.41	3.46	2.82	3.82

Line Profile (Line 57) - R205-R206

Line Profile (Line 60) - R205 - BLDG

		Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#	$\begin{aligned} & Q \\ & \text { (cfs) } \end{aligned}$	Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
61	0.22	264.60	265.29	0.22	0.24	0.24	264.82	265.53	265.53	2.70	2.44	2.50	4.16

Line Profile (Line 64) - YD12 - YD13

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
66	0.96	259.04	259.72	0.58	0.41	0.41	259.62	260.13 j	260.13	2.04	3.16	2.21	1.38

Line Profile (Line 69) - YD14 - BLDG

Line Profile (Line 71) - R210 - YD15

Line Profile (Line 74) - R207 - D219

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
77	8.15	249.22	250.60	1.16	1.12	1.12	250.39	251.72 j	251.72	6.85	7.02	6.70	6.73

	$\begin{aligned} & \text { Q } \\ & \text { (cfs) } \end{aligned}$	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
79	4.08	251.05	252.19	1.25	1.25	1.72	253.19	253.65	253.91	3.33	3.32	4.55	2.41

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
80	3.24	252.19	252.85	1.25	1.21	1.27	253.91	254.06	254.12	2.64	2.67	2.41	1.75

Line Profile (Line 81) - D305 - D306

Line \#	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
81	2.44	252.85	253.47	1.25	0.69	0.79	254.12	254.16	254.26	1.99	3.51	1.75	2.78

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
82	1.89	253.47	254.17	0.79	0.55	0.55	254.26	254.72 j	254.72	2.33	3.67	2.78	3.13

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
83	1.40	254.17	254.79	0.55	0.47	0.47	254.72	255.26 j	255.26	2.70	3.34	3.13	3.81

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
84	1.12	254.79	255.49	0.47	0.42	0.42	255.26	255.91 j	255.91	2.68	3.13	3.81	3.11

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
88	0.30	254.27	254.75	0.36	0.25	0.25	254.63	255.00 j	255.00	1.56	2.47	4.16	3.68

Line Profile (Line 90) - D301 - YD16

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
91	0.35	252.54	253.22	0.39	0.28	0.28	252.93	253.50 j	253.50	1.65	2.59	4.79	4.11

Line Profile (Line 92) - YD17-BLDG

Line Profile (Line 94) - D302 - D310

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
95	2.78	253.85	254.60	0.57	0.67	0.67	254.42	255.27	255.27	5.06	4.16	1.75	3.15

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
96	1.71	254.60	255.29	0.67	0.52	0.52	255.27	255.81 j	255.81	2.57	3.55	3.15	4.46

Line Profile (Line 99) - R303-YD18

Line Profile (Line 109) - 1D - D400

Line \#	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
109	3.96	236.31	243.81	1.25	0.80	0.80	237.56	244.61 j	244.61	3.22	4.74	2.94	2.61

	Q (cfs)	Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#		Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
111	1.88	248.00	252.05	0.35	0.55	0.55	248.35	252.60	252.60	6.77	3.66	1.25	2.95

		Invert Elevation		Depth of Flow			Hydraulic Grade Line			Velocity		Cover	
Line \#	$\begin{aligned} & Q \\ & \text { (cfs) } \end{aligned}$	Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)	Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
112	1.17	252.05	256.01	0.55	0.43	0.43	252.60	256.44 j	256.44	2.27	3.17	2.95	2.84

Line Profile (Line 117) - R404-R405

Line Profile (Line 118) - R405-YD25

Line Profile (Line 121) - R400-R406

Line Profile (Line 122) - R406-R407

Line Profile (Line 124) - R406-R408

Line Profile (Line 126) - R409-YD27

Line Profile (Line 127) - YD27 - YD28

Line Profile (Line 128) - R408 - BLDG

APPENDIXD Drainage Area Maps

INVENTORY

Sheet I of 3: Existing Drainage Area Map
Sheet 2 of 3: Proposed Drainage Area Map
Sheet 3 of 3: Proposed Inlet Area Map

[^0]: ${ }^{1}$ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
 Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
 Please refer to NOAA Atlas 14 document for more information.

[^1]: Total Runoff Area $=654,810$ sf Runoff Volume $=245,864$ cf Average Runoff Depth $=4.51$ " $\mathbf{2 1 . 6 0 \%}$ Pervious $=141,443$ sf 78.40% Impervious $=513,367$ sf

